A Unified Uncertainty based Approach for Optimal Quality Decisions

Dr Jody Muelaner

Problem: Confusion

For quality we must understand uncertainty But we don't understand how to apply uncertainty to manufacturing... and GUM hasn't been adopted

Problem

- Different methods and terms for equivalent quantities
- No single system is fit for purpose
- Arbitrary targets like 'Six-Sigma' are not optimal

Accuracy and Uncertainty

True value somewhere in this range

Similar terms:

- Error source:
 MSA
- Influence quantity: Uncertainty
- Factor: **SPC**

Random & Systematic Effects

- Laboratory for Integrated Metrology Applications
- Random effects / Random uncertainty: Uncertainty
- Random error / Precision: MSA
- Common causes: SPC (was chance causes)

Repeatability

(Short-term variability in SPC)

Reproducibility (Long-term variability in SPC)

- Bias & Trueness: MSA
- Systematic effects: Uncertainty
 - Caused by Influence quantities
- Special cause variation: SPC
 - Was assignable cause
 - When all compensated, so negligible special cause variation, process is in *Statistical Control:* SPC (was Stable process)

No single system is fit for purpose

- Gage R&R study often seen as 'truth' in industry
- But reproducibility often limited to part and operator!
- Environmental and material property variations often not represented
- GUM approach forces us to consider effect of all influences

Laboratory for Integrated Metrology Applications

SPC can miss systematic effects

- Consider a steel gage measuring a part produced on a steel machine
- Temperature varies
- Expansion of machine and gage cancel
- Significant variation may not appear in SPC data

$$L_{M(T+\Delta T)} = L + \Delta T \ L \ \alpha_M$$

$$L_{P(T)} = L_{M(T+\Delta T)} - \Delta T L \alpha_P$$

$$L_{P(T)} = L + \Delta T L (\alpha_M - \alpha_P)$$

$$L_G = L_{M(T+\Delta T)} - \Delta T \ L \ \alpha_G$$

$$L_G = L + \Delta T L (\alpha_M - \alpha_G)$$

SPC can miss systematic effects

An uncertainty evaluation (GUM) approach would identify that the gage is not capable, but normally MSA is used which can easily miss this effect.

Limitations of GUM approach

- GUM is 'after-the-fact'
 i.e. correction values
 must already be known
 to evaluate uncertainty
- GUM assumes Gaussian output which is only exact for linear models

 I will use correction for thermal expansion to gives examples of these issues

$$\Delta L = \propto \Delta T \ L_0$$

- Linear assumption is valid
- Typical uncertainties (95%)
 - ∝ : 6% to 10%
 - $-\Delta T$: 0.1 °C to 0.5 °C
 - *L₀* : Typically negligible
- Often significant and sometimes dominant

$$\Delta L = \propto \Delta T \ L_0$$

$u_{\Delta L}^2 \approx (\alpha \, \Delta T \, u_L)^2 + \, (L \, \Delta T \, u_\alpha)^2 + (L \, \alpha \, u_T)^2$

- GUM assumes each input quantity has been determined
- We often need uncertainty before they are determined
 - Estimate uncertainty for a planned measurement
 - Determine probability of parts conforming
- Two approaches typically used
 - If uncertainty in the input has negligible effect use nominal value
 - If it is significant use worst case value
- Why use worst case?
 - Because GUM doesn't have a solution!
- Modelling this is easy if we consider errors and propagate the uncertainty in these errors with MCS

Temp. Correction: GUM Approach

$\Delta L = \propto \Delta T \ L_0$

$$\begin{aligned} u_{TE}^{2} &\approx (\alpha \ \Delta T \ u_{L})^{2} + (L \ \Delta T \ u_{\alpha})^{2} + (L \ \alpha \ u_{T})^{2} \\ &+ (\Delta T \ u_{L} \ u_{\alpha})^{2} + (\alpha \ u_{L} \ u_{T})^{2} + (L \ u_{\alpha} \ u_{T})^{2} \\ &+ (u_{T} \ u_{L} \ u_{\alpha})^{2} \end{aligned}$$

- Terms evaluated for 14400 combinations of parameters:
 - Lengths between 1 µm and 100 m
 - Fractional standard uncertainty in length of between 10⁻⁷ and 10⁻³
 - CTE's between 1.2 and 23 ppm/°C
 - Fractional standard uncertainty in CTE of between 0.2% and 37%
 - Temperature offsets of between 0.01 °C and 20 °C
 - Fractional standard uncertainty in measurement of the temperature offset of between 0.001 °C and 2 °C.

Scale Correction: GUM Approach

$\Delta L = \propto \Delta T \ L_0$

$u_{TE}^{2} \approx (\alpha \Delta T u_{L})^{2} + (L \Delta T u_{\alpha})^{2} + (L \alpha u_{T})^{2}$ $+ (\Delta T u_{L} u_{\alpha})^{2} + (\alpha u_{L} u_{T})^{2} + (L u_{\alpha} u_{T})^{2}$ $+ (u_{T} u_{L} u_{\alpha})^{2}$

- Terms evaluated for 14400 combinations of parameters:
 - Lengths between 1 µm and 100 m
 - Fractional standard uncertainty in length of between 10⁻⁷ and 10⁻³
 - CTE's between 1.2 and 23 ppm/°C
 - Fractional standard uncertainty in CTE of between 0.2% and 37%
 - Temperature offsets of between 0.01 °C and 20 °C
 - Fractional standard uncertainty in measurement of the temperature offset of between 0.001 °C and 2 °C.

Monte Carlo Verification (GUM-S1)

Optimize for Cost per Part Sold

Fail Verification

False Positive, P₃

True Positive, P2

A part meets 1 of 4 conditions,		Pass Verification
with finite probabilities:	In-Spec'	True Negative, P1
	Out-of-Spec'	False Negative, P4

- Cost of manufacture (C_1) occurs for every part
- Defects reaching customer have additional cost (C_2)

- 1. *M* and *P* discreet values (instruments and machines). Try all combo's
- 2. Find *k* to minimize C_Q for each combination (PS using MVN CDF)

Unified Uncertainty

- Cost based optimization algorithms
 - Process selection
 - Instrument selection
 - Set of conformance limits
- Standardised terminology
- Uncertainty evaluation algorithms
 - Generic models of influences
 - Before-the-fact uncertainty
 - Non-Gaussian distributions
- Algorithms for experimentally verifying uncertainty models

A Unified Uncertainty based Approach for Optimal Quality Decisions

Dr Jody Muelaner

