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Abstract 

Thermal expansion is a source of uncertainty in dimensional measurements, 

which is often significant and in some cases dominant. Methods of evaluating and 

reducing this uncertainty are therefore of fundamental importance to product 

quality, safety and efficiency in many areas. Existing methods depend on the 

implicit assumption that thermal expansion is relatively uniform throughout the 

part and can therefore be corrected by scaling the measurement result. The 

uncertainty of this scale correction is then included in the uncertainty of the 

dimensional measurement. It is shown here that this assumption is not always 

valid due to thermal gradients resulting in significant shape changes. In some 

cases these are the dominant source of dimensional uncertainty. Methods are 

described to first determine whether shape change is significant. Where shape 

changes are negligible but thermal expansion remains significant then the 

established methods may be used. This paper describes the application of the 

Guide to the expression of Uncertainty in Measurement (GUM) uncertainty 

framework which provides an approximate solution for thermal expansion due to 

non-linearity and a non-Gaussian output function. The uncertainty associated with 

this approximation is rigorously evaluated by comparison with Monte Carlo 

Simulation over a wide range of parameter values. It is often necessary to estimate 

the expected uncertainty for a measurement which will be made in the future. It 

is shown that the current method for this is inadequate and an improved method 

is given.   

1 Introduction 

Part dimensions vary with temperature; typically expanding with increasing 

temperature. The rate for a specific material is given by its coefficient of thermal 

expansion (CTE). Typical values are between 1.2 and 23 parts per million (ppm) 

per degree of temperature increase. For normal environmental temperature ranges 

a linear rate of expansion can be assumed so that the change in length is 

approximated by 
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∆𝐿 = ∝ ∆𝑇 𝐿0  (1) 

where α is the coefficient of thermal expansion, ΔT is the change in temperature 

and L0 is the initial length. 

Product dimensions are specified at a standard reference temperature of 20°C. 

Measurement at a different temperature will result in an error. The part 

temperature should therefore be measured in order to correct for this error. Part 

temperature is normally assumed to be uniform so that thermal expansion does 

not result in shape changes. If this assumption is valid the correction can be made 

using Eqn. (1). Uncertainty arises from the uncertainties in the determination of 

the part’s temperature, length and CTE. A review of the uncertainties in 

dimensional measurements due to temperature variation was carried out in 1994 

by Swyt [1], which showed that for measurements carried out with state of the art 

measurement control the uncertainty due to thermal expansion remained a 

significant but not a dominant source of uncertainty ranging from 14% to 25% of 

the combined uncertainty of measurement. For more typical measurements 

temperature can have a much greater effect.  

Recent reviews of temperature sensor accuracy [2, 3] give expanded uncertainties, 

at 95% confidence, as from 0.01°C for state of the art  Industrial platinum 

resistance thermometers (IPRTs) [4] and Thermistors [5], to between 0.1 °C and 

0.5 °C for low cost Thermocouples [6]. In practice however few industrial 

measurements are better than 0.1 °C. A state of the art CMM calibration facility 

may achieve an expanded uncertainty in temperature control of 0.05°C compared 

with 0.5°C for most metrology laboratories [7]. Many industrial measurements 

are made within uncontrolled environments where an expanded uncertainty in the 

single point temperature of 5°C and spatial temperature gradients of 1°C/m would 

be typical [8]. Expanded uncertainty of part CTE may be as high as 100% for 

broad classes of material such as carbon steel or aluminium alloy, reducing to 

approximately 10% for a known grade such as gauge quality carbon steel. With 

known chemical composition it reduces further to between 6% and 9%, still much 

higher than the 0.3% possible by measuring samples with dilatometry [1]. 

2 Uncertainty Evaluation for Scale Correction 

The Guide to the Expression of Uncertainty in Measurement (GUM) [9] gives 

analytical methods to combine uncertainty. These are exact when the 

measurement result is the linear combination of a number of input quantities, each 

having independent, random and normally distributed uncertainty. The method is 

summarized by 
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𝑢𝐶
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖

)
2

𝑢2(𝑥𝑖)

𝑁

𝑖=1

    (2) 

where uc
2(y) is the variance representing the combined standard uncertainty of the 

measurement result y, ∂f/∂xi is the sensitivity of the measurement result y to input 

quantity xi and u(xi) is the standard uncertainty in xi. 

For cases, such as thermal expansion, where the measurement result is a non-

linear function of a number of input quantities Eqn.   (2) may not 

properly represent the combination of uncertainty. In such cases the GUM 

recommends that higher order terms are included. However, this is still an 

approximate solution. It depends on assumptions including the Central Limit 

Theorem. The first supplement to the GUM notes that quantifying the effects of 

these approximations is difficult. It recommends that Monte Carlo simulation 

(MCS) is used to validate the analytical equations [10]. 

A scale correction for thermal expansion involves determining the quantities ΔT, 

L and α, with some uncertainty, and applying Eqn. (1). Following the GUM 

uncertainty framework and including all non-zero terms in the Taylor-series 

expansion, the uncertainty due to thermal expansion is given by: 

𝑢𝑇𝐸
2 ≈ (𝛼 ∆𝑇 𝑢𝐿)2 +  (𝐿 ∆𝑇 𝑢𝛼)2 + (𝐿 𝛼 𝑢𝑇)2 

             +(∆𝑇 𝑢𝐿 𝑢𝛼)2 + (α 𝑢𝐿 𝑢𝑇)2 + (L 𝑢𝛼  𝑢𝑇)2 

             +(𝑢𝑇 𝑢𝐿 𝑢𝛼)2 

(3) 

where uL, uα and uT are the uncertainties in the part dimension, CTE and the 

temperature offset respectively. The first order terms are given on the first line, 

second order on the second line and third order on the third line. 

A generalized validation of this equation against MCS was carried out. All terms 

of Eqn. (3) were evaluated over 14400 combinations of parameters. This covered 

lengths between 1 µm and 100 m, fractional standard uncertainty in length of 

between 10-7 and 10-3, CTE’s between 1.2 nd 23 ppm/°C, fractional standard 

uncertainty in CTE of between 0.2% and 37%, temperature offsets of between 

0.01 °C and 20 °C and fractional standard uncertainty in measurement of the 

temperature offset of between 0.001 °C and 2 °C. For each of these evaluations 

comparison was also made to simulation with 108 Monte Carlo trials which was 

shown by convergence study to provide a standard deviation of the simulation 

results of less than 1% for confidence limits up to 99.999% with considerably 

better accuracy for lower confidence limits and for the standard uncertainty. The 

comparison showed that, under the range of conditions simulated: 
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1. The first order term involving uL, which is sometimes ignored, is never 

dominant but can sometimes contribute approximately 20% of the total 

variance. Both of the other first order terms can be dominant. 

2. Only one of the higher order terms is significant; the uα∙uT term can 

contribute up to 12% of total variance. None of the other higher order 

terms ever contribute more than 0.01% of the total variance. 

3. Where the higher order term is significant this results in a non-Gaussian 

output distribution meaning that errors in the confidence limits are 

considerably higher than errors that would have been seen in the 

standard uncertainty if a first order approximation had been used. The 

higher the confidence level the larger these errors become. This effect 

makes the use of higher order approximations to estimate uncertainty 

highly questionable as illustrated in Figure 1.  

 

Figure 1: Effect of Significant Higher Order Terms on Confidence Limits 

The uncertainty of measurement is intended to characterize the dispersion of the 

values that could reasonably be attributed to the measurand. The GUM method 

uses the assumption of normality to infer this from a standard deviation. Applying 

second order terms when this assumption is not valid does not make sense. Second 

order terms should therefore not be used to find the standard uncertainty. The 

difference between the first order and second order approximation should be used 

to determine whether the normality assumption is valid, where it is valid the 

analytical approach may be taken. Where the normality assumption is not valid 

then confidence limits should be calculated directly from MCS. 

3 Uncertainty Evaluation for a Planned Correction for Thermal 

Expansion 

When estimating the uncertainty of a planned measurement there are two 

approaches which are typically used to estimate expected values for input 

quantities a) where likely deviations in the nominal value of an input quantity 

would result in negligible changes in the combined uncertainty then the nominal 

value is used; b) where  different likely values for the input quantity would result 
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in significantly different values for the combined uncertainty then a worst case 

value is used [11]. The CTE will normally be known in advance and the measured 

length can be assumed to be the nominal length since small changes in the length 

have a negligible effect on the uncertainty of the correction for thermal expansion. 

The measured temperature offset, however, is likely to vary considerably with a 

significant effect on the resulting uncertainty. A worst case value would therefore 

normally be used for the temperature offset. This is, however, inconsistent since 

other uncertainties are not combined using worst case values. A consistent 

approach would be to combine the uncertainty of the temperature offset (UΔT) 

with the uncertainty of the measurement of this offset (UT). The GUM 

uncertainty framework does not provide a method with which to combine an 

uncertainty in the expected value of an input quantity with an uncertainty in its 

determination and this type of bivariate normal distribution must be found by a 

numerical method. 

The error in a correction for thermal expansion is the difference between the true 

value of the thermal expansion and the correction made for it. The true value of 

the thermal expansion cannot be determined, but is given theoretically by 

𝑇𝑇𝐸 = 𝐿 𝐸∆𝑇  𝛼 (4) 

where L is the true length at the reference temperature, α is the true value of the 

CTE and EΔT is the temperature offset at which measurement is carried out. 

EΔT is considered as an error in this case since the temperature control attempts to 

maintain a zero temperature offset. The value of the correction for thermal 

expansion is given by 

𝑀𝑇𝐸 = (𝐿 + 𝐸𝐿)(E∆𝑇 + 𝐸𝑇)(𝛼 + 𝐸𝛼) (5) 

where EL is the error in the length measurement, ET is the error in the measurement 

of the part’s temperature and Eα is the error in the determination of the part’s CTE. 

The error in the correction for thermal expansion is simply the measured thermal 

expansion minus the true thermal expansion, given by 

𝐸𝑇𝐸 = 𝑀𝑇𝐸 − 𝑇𝑇𝐸 (6) 

The errors EΔT, EL, ET and Eα are unknown quantities each having an expectation 

of zero and a dispersion of values that could reasonably be attributed to them 

characterized by their uncertainties; UΔT, UL, UT and Uα respectively. UΔT is 

determined by the stability and accuracy of temperature control in the 

measurement environment and is assumed to have a rectangular distribution. The 

other uncertainties are each the uncertainty with which the corresponding input 
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quantity is determined during the measurement process, they are assumed to have 

normal distributions. 

MCS was used to simulate the error ETE by generating random values for the errors 

EΔT, EL, ET and Eα drawn from the probability density functions characterizing 

UΔT, UL, UT and Uα respectively. The results of simulation using 108 Monte Carlo 

trials were compared with the analytical solution using Eqn. (3). For the analytical 

solution both the worst case value for ΔT and the standard uncertainty in ΔT were 

used. The solutions were compared both in terms of calculated standard 

uncertainty and confidence limits. This comparison was made for 14400 

combinations of parameters similar to those used in the previous section.  

It was found that using the standard uncertainty in the temperature offset (the half-

limit of the rectangular distribution divided by √3) Eqn. (3) gave a close 

agreement with the MCS for the combined standard uncertainties. The agreement 

was within 0.05% for all measurement scenarios. Using the temperature offset as 

a worst case value (the half-limit of the distribution) resulted in differences of up 

to 73%. However, even using the uncertainty in the temperature offset, 

considerably larger differences were seen for confidence limits with differences 

of up to 11% for k=2 and 24% for k=3, where k is the confidence level. In this 

case the reliability of confidence limits cannot be estimated by considering the 

contribution from higher order terms since the first order terms also produce non-

Gaussian output distributions. It is therefore extremely difficult to predict the 

accuracy of the analytical solution and MCS should be used whenever possible. 

4 Effects of Spatial Temperature Variation 

The above analysis assumed that any difference between the part temperature and 

the reference temperature can be represented by a single mean temperature offset. 

In many cases this may be true. There must, however, always be some 

consideration of the spatial temperature variation since the average temperature 

of the part cannot be assumed to be a single point temperature measurement with 

uncertainty equal to the sensor uncertainty. The spatial temperature variation 

should therefore be evaluated as a contribution to the part temperature uncertainty. 

A second cause of uncertainty due to spatial temperature variation is distortion of 

part shape due to temperature gradients. This is an entirely different problem to 

the scale changes produced by linear expansion and one which has been largely 

ignored in previous research [12]. 
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Figure 2: Example of Thermal Gradients Causing Shape Changes in a Truss 

Consider a two dimensional L by H truss with primary datum at point A, 

secondary datum at point B and some other point to be measured at C. The 

structure is to be measured in the presence of temperature gradients dT/dx and 

dT/dy as shown in Figure 2. Assuming the members are in equilibrium with the 

environment, then the average temperature offsets are given by 

∆𝑇𝐴𝐵 = 𝑇𝐴 − 𝑇𝑟𝑒𝑓 +
𝐻

2

𝑑𝑇

𝑑𝑦
 (7) 

∆𝑇𝐴𝐶 = 𝑇𝐴 − 𝑇𝑟𝑒𝑓 +
𝐻

4

𝑑𝑇

𝑑𝑦
+

𝐿

2

𝑑𝑇

𝑑𝑥
 (8) 

∆𝑇𝐵𝐶 = 𝑇𝐴 − 𝑇𝑟𝑒𝑓 +
3𝐻

4

𝑑𝑇

𝑑𝑦
+

𝐿

2

𝑑𝑇

𝑑𝑥
 (9) 

where ΔTAB, ΔTAC and ΔTBC are the average temperature offsets of members AB, 

AC and BC respectively,  TA is the temperature at point A and Tref is the reference 

temperature, assumed to be 20°C.  

Assuming that thermal expansion produces a uniform scaling effect then the 

thermal expansion of point C would be given by 

∆𝐶𝑥(𝑠𝑐𝑎𝑙𝑖𝑛𝑔) =
∆𝑇𝐴𝐶 + ∆𝑇𝐵𝐶

2
𝛼𝐿 (10) 

∆𝐶𝑦(𝑠𝑐𝑎𝑙𝑖𝑛𝑔) = ∆𝑇𝐴𝐵𝛼
𝐻

2
 (11) 

Considering the actual member’s lengths, with thermal expansion, these become 

𝐿𝐴𝐵 = 𝐻(1 + 𝛼 ∆𝑇𝐴𝐵) (12) 
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𝐿𝐵𝐶 = (1 + 𝛼 ∆𝑇𝐵𝐶)√𝐿2 + (
𝐻

2
)

2

   (13) 

𝐿𝐴𝐶 = (1 + 𝛼 ∆𝑇𝐴𝐶)√𝐿2 + (
𝐻

2
)

2

   (14) 

The coordinates of A and B are given by A=[0,0] and B=[0,LAB]. The coordinates 

of C can then be found by applying Pythagoras’ theorem to A, B LAB, LBC and LAC. 

This gives the effect of thermal expansion as 

∆𝐶𝑦 =
𝐿𝐴𝐵

2 + 𝐿𝐴𝐶
2 − 𝐿𝐵𝐶

2

2 𝐿𝐴𝐵

−
𝐻

2
 (15) 

∆𝐶𝑥 = √𝐿𝐴𝐶
2 −

𝐿𝐴𝐵
2 + 𝐿𝐴𝐶

2 − 𝐿𝐵𝐶
2

2 𝐿𝐴𝐵

− 𝐿 (16) 

This solution considers the effects of thermal expansion induced shape changes 

in addition to scaling. Eqn’s (10) and (11) consider only scaling. If the shape 

change solution is considered the best estimate then the errors resulting from 

applying a scaling based correction are approximated by 

𝐸𝐶𝑥 = ∆𝐶𝑥(𝑠𝑐𝑎𝑙𝑖𝑛𝑔) − ∆𝐶𝑥 (17) 

𝐸𝐶𝑦 = ∆𝐶𝑦(𝑠𝑐𝑎𝑙𝑖𝑛𝑔) − ∆𝐶𝑦 (18) 

Substituting through into Eqn’s (17) and (18) results in an unwieldly expression 

from which it is difficult to establish general patterns for the relationship between 

the input parameters (dimensions of structure, CTE and temperature gradients) 

and the relative errors. By empirical fitting it is however possible to make some 

useful generalizations. Firstly for one-dimensional length measurements only ECx 

is of relevance and it is negligible for typical length measurements with relatively 

short lengths and/or high aspect ratios, such as gauge block comparisons. For 

coordinate measurements Ecy is important and is approximated very well by 

𝐸𝑐𝑦 ≈
𝑑𝑇

𝑑𝑦
 𝛼 (𝐴 𝐻2 + 𝐵 𝐿2 )            𝐴 =  1.25 x 10−7      𝐵 = 5 𝑥 10−7 (19) 

This shows clearly that, for a two-dimensional part, the shape error; 1) Is not 

affected by the temperature gradient moving away from the datum plane; 2) 
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Increases linearly with gradient in the perpendicular direction and with the CTE; 

and 3) Increases quadratically with both length and width but is 4 times more 

effected by length than by width. 

The above example highlights the importance of considering the impact of spatial 

temperature variation on dimensional uncertainty. For real components, first 

principles analytical models are unlikely to be practical and Finite Element 

Analysis (FEA) should be used to determine the sensitivity of critical dimensions 

to temperature gradients. For structures with spatial variation in the CTE, for 

example composites and assemblies, the effects of these gradients should also be 

examined within this modelling process. 

Significant shape change should be corrected. Eqn. (19) provides a simple 

approximation. For more complex part geometry and more accurate corrections 

FEA should be used. This has been done for machine tools for many years [13] 

reducing maximum errors by a factor of seven [14]. Applying this technique to 

correct for errors in measurements is a logical progression [15]. Such approaches, 

however, lack a rigorous method to determine the uncertainty of these corrections. 

There are also practical issues in the implementation of these methods which have 

not been fully resolved in previous work. One major practical issue is obtaining a 

sufficiently detailed temperature map of the part to make accurate predictions of 

thermal distortions. In order to calculate the thermal strain within a part an FEA 

model must be given temperatures measurements at every node in the mesh 

representing the part. The mesh is likely to involve 103 to 107 nodes, which limits 

applicability. Further work is required in this area. 

5 Conclusions 

It has been shown that the use of higher order terms as recommended by the GUM 

results in a false sense of an improved estimate of uncertainty. If the difference 

between a first order and second order solution is significant then this indicates 

that normality cannot be assumed. In this case MCS should be used to find 

confidence limits directly. When estimating the uncertainty of a measurement to 

be carried out in the future worst case estimates of the magnitude of temperature 

offsets to be corrected are currently used. An improved estimate is obtained by 

using the uncertainty of this offset although non-normality means that MCS 

would again provide a better solution. A simple truss model has been used as the 

basis equations giving an estimate of shape change due to thermal gradients, this 

effect is important for coordinate measurements and should not be ignored. 
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